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It is known that Maxwell's electrodynamics--as usually understood at the 
present time--when applied to moving bodies, leads to asymmetries which do 
not appear to be inherent in the phenomena. Take, for example, the reciprocal 
electrodynamic action of a magnet and a conductor. The observable 
phenomenon here depends only on the relative motion of the conductor and 
the magnet, whereas the customary view draws a sharp distinction between 
the two cases in which either the one or the other of these bodies is in motion. 
For if the magnet is in motion and the conductor at rest, there arises in the 
neighbourhood of the magnet an electric field with a certain definite energy, 
producing a current at the places where parts of the conductor are situated. But 
if the magnet is stationary and the conductor in motion, no electric field arises 
in the neighbourhood of the magnet. In the conductor, however, we find an 
electromotive force, to which in itself there is no corresponding energy, but 
which gives rise--assuming equality of relative motion in the two cases 
discussed--to electric currents of the same path and intensity as those 
produced by the electric forces in the former case. 

Examples of this sort, together with the unsuccessful attempts to discover 
any motion of the earth relatively to the ``light medium,'' suggest that the 
phenomena of electrodynamics as well as of mechanics possess no properties 
corresponding to the idea of absolute rest. They suggest rather that, as has 
already been shown to the first order of small quantities, the same laws of 
electrodynamics and optics will be valid for all frames of reference for which 
the equations of mechanics hold good.1 We will raise this conjecture (the 
purport of which will hereafter be called the ``Principle of Relativity'') to the 
status of a postulate, and also introduce another postulate, which is only 
apparently irreconcilable with the former, namely, that light is always 
propagated in empty space with a definite velocity c which is independent of 
the state of motion of the emitting body. These two postulates suffice for the 
attainment of a simple and consistent theory of the electrodynamics of moving 
bodies based on Maxwell's theory for stationary bodies. The introduction of a 
``luminiferous ether'' will prove to be superfluous inasmuch as the view here 
to be developed will not require an ``absolutely stationary space'' provided 
with special properties, nor assign a velocity-vector to a point of the empty 
space in which electromagnetic processes take place. 

The theory to be developed is based--like all electrodynamics--on the 
kinematics of the rigid body, since the assertions of any such theory have to 
do with the relationships between rigid bodies (systems of co-ordinates), 
clocks, and electromagnetic processes. Insufficient consideration of this 
circumstance lies at the root of the difficulties which the electrodynamics of 
moving bodies at present encounters. 
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I. KINEMATICAL PART 
§ 1. Definition of Simultaneity 

Let us take a system of co-ordinates in which the equations of Newtonian 
mechanics hold good.2 In order to render our presentation more precise and to 
distinguish this system of co-ordinates verbally from others which will be 
introduced hereafter, we call it the ``stationary system.''  

If a material point is at rest relatively to this system of co-ordinates, its 
position can be defined relatively thereto by the employment of rigid 
standards of measurement and the methods of Euclidean geometry, and can be 
expressed in Cartesian co-ordinates. 

If we wish to describe the motion of a material point, we give the values of 
its co-ordinates as functions of the time. Now we must bear carefully in mind 
that a mathematical description of this kind has no physical meaning unless 
we are quite clear as to what we understand by ``time.'' We have to take into 
account that all our judgments in which time plays a part are always 
judgments of simultaneous events. If, for instance, I say, ``That train arrives 
here at 7 o'clock,'' I mean something like this: ``The pointing of the small 
hand of my watch to 7 and the arrival of the train are simultaneous events.''3 

It might appear possible to overcome all the difficulties attending the 
definition of ``time'' by substituting ``the position of the small hand of my 
watch'' for ``time.'' And in fact such a definition is satisfactory when we are 
concerned with defining a time exclusively for the place where the watch is 
located; but it is no longer satisfactory when we have to connect in time series 
of events occurring at different places, or--what comes to the same thing--to 
evaluate the times of events occurring at places remote from the watch. 

We might, of course, content ourselves with time values determined by an 
observer stationed together with the watch at the origin of the co-ordinates, 
and co-ordinating the corresponding positions of the hands with light signals, 
given out by every event to be timed, and reaching him through empty space. 
But this co-ordination has the disadvantage that it is not independent of the 
standpoint of the observer with the watch or clock, as we know from 
experience. We arrive at a much more practical determination along the 
following line of thought. 

If at the point A of space there is a clock, an observer at A can determine 
the time values of events in the immediate proximity of A by finding the 
positions of the hands which are simultaneous with these events. If there is at 
the point B of space another clock in all respects resembling the one at A, it is 
possible for an observer at B to determine the time values of events in the 
immediate neighbourhood of B. But it is not possible without further 
assumption to compare, in respect of time, an event at A with an event at B. 
We have so far defined only an ``A time'' and a ``B time.'' We have not 
defined a common ``time'' for A and B, for the latter cannot be defined at all 
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unless we establish by definition that the ``time'' required by light to travel 
from A to B equals the ``time'' it requires to travel from B to A. Let a ray of 
light start at the ``A time'' from A towards B, let it at the ``B time''  be 

reflected at B in the direction of A, and arrive again at A at the ``A time'' . 

In accordance with definition the two clocks synchronize if 

  

We assume that this definition of synchronism is free from contradictions, 
and possible for any number of points; and that the following relations are 
universally valid:-- 

1. If the clock at B synchronizes with the clock at A, the clock at A 
synchronizes with the clock at B.  

2. If the clock at A synchronizes with the clock at B and also with the 
clock at C, the clocks at B and C also synchronize with each other.  

Thus with the help of certain imaginary physical experiments we have 
settled what is to be understood by synchronous stationary clocks located at 
different places, and have evidently obtained a definition of ``simultaneous,'' 
or ``synchronous,'' and of ``time.'' The ``time'' of an event is that which is 
given simultaneously with the event by a stationary clock located at the place 
of the event, this clock being synchronous, and indeed synchronous for all 
time determinations, with a specified stationary clock. 

In agreement with experience we further assume the quantity 

  

to be a universal constant--the velocity of light in empty space. 

It is essential to have time defined by means of stationary clocks in the 
stationary system, and the time now defined being appropriate to the 
stationary system we call it ``the time of the stationary system.'' 

§ 2. On the Relativity of Lengths and Times 
The following reflexions are based on the principle of relativity and on the 

principle of the constancy of the velocity of light. These two principles we 
define as follows:--  

1. The laws by which the states of physical systems undergo change are 
not affected, whether these changes of state be referred to the one or the 
other of two systems of co-ordinates in uniform translatory motion.  
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2. Any ray of light moves in the ``stationary'' system of co-ordinates with 
the determined velocity c, whether the ray be emitted by a stationary or 
by a moving body. Hence 

  

where time interval is to be taken in the sense of the definition in § 1. 

Let there be given a stationary rigid rod; and let its length be l as measured 
by a measuring-rod which is also stationary. We now imagine the axis of the 
rod lying along the axis of x of the stationary system of co-ordinates, and that 
a uniform motion of parallel translation with velocity v along the axis of x in 
the direction of increasing x is then imparted to the rod. We now inquire as to 
the length of the moving rod, and imagine its length to be ascertained by the 
following two operations:-- 

(a)  
The observer moves together with the given measuring-
rod and the rod to be measured, and measures the length 
of the rod directly by superposing the measuring-rod, in 
just the same way as if all three were at rest. 

(b)  
By means of stationary clocks set up in the stationary 
system and synchronizing in accordance with § 1, the 
observer ascertains at what points of the stationary 
system the two ends of the rod to be measured are 
located at a definite time. The distance between these 
two points, measured by the measuring-rod already 
employed, which in this case is at rest, is also a length 
which may be designated ``the length of the rod.''  

In accordance with the principle of relativity the length to be discovered by 
the operation (a)--we will call it ``the length of the rod in the moving system''-
-must be equal to the length l of the stationary rod. 

The length to be discovered by the operation (b) we will call ``the length of 
the (moving) rod in the stationary system.'' This we shall determine on the 
basis of our two principles, and we shall find that it differs from l. 

Current kinematics tacitly assumes that the lengths determined by these two 
operations are precisely equal, or in other words, that a moving rigid body at 
the epoch t may in geometrical respects be perfectly represented by the same 
body at rest in a definite position. 

We imagine further that at the two ends A and B of the rod, clocks are 
placed which synchronize with the clocks of the stationary system, that is to 
say that their indications correspond at any instant to the ``time of the 
stationary system'' at the places where they happen to be. These clocks are 
therefore ``synchronous in the stationary system.'' 
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We imagine further that with each clock there is a moving observer, and 
that these observers apply to both clocks the criterion established in § 1 for the 
synchronization of two clocks. Let a ray of light depart from A at the time4 

, let it be reflected at B at the time , and reach A again at the time . 

Taking into consideration the principle of the constancy of the velocity of 
light we find that 

  

where  denotes the length of the moving rod--measured in the stationary 

system. Observers moving with the moving rod would thus find that the two 
clocks were not synchronous, while observers in the stationary system would 
declare the clocks to be synchronous. 

So we see that we cannot attach any absolute signification to the concept of 
simultaneity, but that two events which, viewed from a system of co-
ordinates, are simultaneous, can no longer be looked upon as simultaneous 
events when envisaged from a system which is in motion relatively to that 
system. 

§ 3. Theory of the Transformation of Co-
ordinates and Times from a Stationary System to 

another System in Uniform Motion of 
Translation Relatively to the Former 

Let us in ``stationary'' space take two systems of co-ordinates, i.e. two 
systems, each of three rigid material lines, perpendicular to one another, and 
issuing from a point. Let the axes of X of the two systems coincide, and their 
axes of Y and Z respectively be parallel. Let each system be provided with a 
rigid measuring-rod and a number of clocks, and let the two measuring-rods, 
and likewise all the clocks of the two systems, be in all respects alike.  

Now to the origin of one of the two systems (k) let a constant velocity v be 
imparted in the direction of the increasing x of the other stationary system (K), 
and let this velocity be communicated to the axes of the co-ordinates, the 
relevant measuring-rod, and the clocks. To any time of the stationary system 
K there then will correspond a definite position of the axes of the moving 
system, and from reasons of symmetry we are entitled to assume that the 
motion of k may be such that the axes of the moving system are at the time t 
(this ``t'' always denotes a time of the stationary system) parallel to the axes of 
the stationary system. 

We now imagine space to be measured from the stationary system K by 
means of the stationary measuring-rod, and also from the moving system k by 
means of the measuring-rod moving with it; and that we thus obtain the co-
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ordinates x, y, z, and , ,  respectively. Further, let the time t of the 

stationary system be determined for all points thereof at which there are 
clocks by means of light signals in the manner indicated in § 1; similarly let 
the time  of the moving system be determined for all points of the moving 
system at which there are clocks at rest relatively to that system by applying 
the method, given in § 1, of light signals between the points at which the latter 
clocks are located. 

To any system of values x, y, z, t, which completely defines the place and 
time of an event in the stationary system, there belongs a system of values , 

, , , determining that event relatively to the system k, and our task is now 

to find the system of equations connecting these quantities. 

In the first place it is clear that the equations must be linear on account of 
the properties of homogeneity which we attribute to space and time. 

If we place x'=x-vt, it is clear that a point at rest in the system k must have a 
system of values x', y, z, independent of time. We first define  as a function 
of x', y, z, and t. To do this we have to express in equations that  is nothing 
else than the summary of the data of clocks at rest in system k, which have 
been synchronized according to the rule given in § 1. 

From the origin of system k let a ray be emitted at the time  along the X-

axis to x', and at the time  be reflected thence to the origin of the co-

ordinates, arriving there at the time ; we then must have , 

or, by inserting the arguments of the function  and applying the principle of 
the constancy of the velocity of light in the stationary system:-- 

  

Hence, if x' be chosen infinitesimally small, 

  

or 

  

It is to be noted that instead of the origin of the co-ordinates we might have 
chosen any other point for the point of origin of the ray, and the equation just 
obtained is therefore valid for all values of x', y, z. 
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An analogous consideration--applied to the axes of Y and Z--it being borne 
in mind that light is always propagated along these axes, when viewed from 
the stationary system, with the velocity gives us 

  

Since  is a linear function, it follows from these equations that 

  

where a is a function  at present unknown, and where for brevity it is 

assumed that at the origin of k, , when t=0. 

With the help of this result we easily determine the quantities , ,  by 

expressing in equations that light (as required by the principle of the 
constancy of the velocity of light, in combination with the principle of 
relativity) is also propagated with velocity c when measured in the moving 
system. For a ray of light emitted at the time  in the direction of the 
increasing  

  

But the ray moves relatively to the initial point of k, when measured in the 
stationary system, with the velocity c-v, so that 

 

If we insert this value of t in the equation for , we obtain 

  

In an analogous manner we find, by considering rays moving along the two 
other axes, that 

  

when 
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Thus 

  

Substituting for x' its value, we obtain 

  

where 

  

and  is an as yet unknown function of v. If no assumption whatever be made 

as to the initial position of the moving system and as to the zero point of , an 
additive constant is to be placed on the right side of each of these equations. 

We now have to prove that any ray of light, measured in the moving 
system, is propagated with the velocity c, if, as we have assumed, this is the 
case in the stationary system; for we have not as yet furnished the proof that 
the principle of the constancy of the velocity of light is compatible with the 
principle of relativity. 

At the time , when the origin of the co-ordinates is common to 
the two systems, let a spherical wave be emitted therefrom, and be propagated 
with the velocity c in system K. If (x, y, z) be a point just attained by this 
wave, then 

x2+y2+z2=c2t2.
 

Transforming this equation with the aid of our equations of transformation 
we obtain after a simple calculation 

  

The wave under consideration is therefore no less a spherical wave with 
velocity of propagation c when viewed in the moving system. This shows that 
our two fundamental principles are compatible.5 
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In the equations of transformation which have been developed there enters 
an unknown function  of v, which we will now determine. 

For this purpose we introduce a third system of co-ordinates , which 
relatively to the system k is in a state of parallel translatory motion parallel to 
the axis of ,*1 such that the origin of co-ordinates of system , moves with 
velocity -v on the axis of . At the time t=0 let all three origins coincide, and 
when t=x=y=z=0 let the time t' of the system  be zero. We call the co-
ordinates, measured in the system , x', y', z', and by a twofold application of 
our equations of transformation we obtain 

  

Since the relations between x', y', z' and x, y, z do not contain the time t, the 
systems K and  are at rest with respect to one another, and it is clear that 
the transformation from K to  must be the identical transformation. Thus 

 

We now inquire into the signification of . We give our attention to that 

part of the axis of Y of system k which lies between  and 

. This part of the axis of Y is a rod moving perpendicularly 

to its axis with velocity v relatively to system K. Its ends possess in K the co-
ordinates 

  
 
and 

 

The length of the rod measured in K is therefore ; and this gives us the 

meaning of the function . From reasons of symmetry it is now evident 

that the length of a given rod moving perpendicularly to its axis, measured in 
the stationary system, must depend only on the velocity and not on the 
direction and the sense of the motion. The length of the moving rod measured 
in the stationary system does not change, therefore, if v and -v are 
interchanged. Hence follows that , or 
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It follows from this relation and the one previously found that , so 

that the transformation equations which have been found become 

  

where 

 

§ 4. Physical Meaning of the Equations Obtained 
in Respect to Moving Rigid Bodies and Moving 

Clocks 

We envisage a rigid sphere6 of radius R, at rest relatively to the moving 
system k, and with its centre at the origin of co-ordinates of k. The equation of 
the surface of this sphere moving relatively to the system K with velocity v is  

  

The equation of this surface expressed in x, y, z at the time t=0 is 

  

A rigid body which, measured in a state of rest, has the form of a sphere, 
therefore has in a state of motion--viewed from the stationary system--the 
form of an ellipsoid of revolution with the axes 

  

Thus, whereas the Y and Z dimensions of the sphere (and therefore of every 
rigid body of no matter what form) do not appear modified by the motion, the 
X dimension appears shortened in the ratio , i.e. the greater 

the value of v, the greater the shortening. For v=c all moving objects--viewed 
from the ``stationary'' system--shrivel up into plane figures.*2 For velocities 
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greater than that of light our deliberations become meaningless; we shall, 
however, find in what follows, that the velocity of light in our theory plays the 
part, physically, of an infinitely great velocity. 

It is clear that the same results hold good of bodies at rest in the 
``stationary'' system, viewed from a system in uniform motion. 

Further, we imagine one of the clocks which are qualified to mark the time t 
when at rest relatively to the stationary system, and the time  when at rest 
relatively to the moving system, to be located at the origin of the co-ordinates 
of k, and so adjusted that it marks the time . What is the rate of this clock, 
when viewed from the stationary system? 

Between the quantities x, t, and , which refer to the position of the clock, 
we have, evidently, x=vt and 

  

Therefore, 

  

whence it follows that the time marked by the clock (viewed in the stationary 
system) is slow by seconds per second, or--neglecting 

magnitudes of fourth and higher order--by . 

From this there ensues the following peculiar consequence. If at the points 
A and B of K there are stationary clocks which, viewed in the stationary 
system, are synchronous; and if the clock at A is moved with the velocity v 
along the line AB to B, then on its arrival at B the two clocks no longer 
synchronize, but the clock moved from A to B lags behind the other which has 
remained at B by (up to magnitudes of fourth and higher order), t 

being the time occupied in the journey from A to B. 

It is at once apparent that this result still holds good if the clock moves from 
A to B in any polygonal line, and also when the points A and B coincide. 

If we assume that the result proved for a polygonal line is also valid for a 
continuously curved line, we arrive at this result: If one of two synchronous 
clocks at A is moved in a closed curve with constant velocity until it returns to 
A, the journey lasting t seconds, then by the clock which has remained at rest 
the travelled clock on its arrival at A will be  second slow. Thence we 

conclude that a balance-clock7 at the equator must go more slowly, by a very 
small amount, than a precisely similar clock situated at one of the poles under 
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otherwise identical conditions. 

§ 5. The Composition of Velocities 
In the system k moving along the axis of X of the system K with velocity v, 

let a point move in accordance with the equations  

  

where  and  denote constants. 

Required: the motion of the point relatively to the system K. If with the 
help of the equations of transformation developed in § 3 we introduce the 
quantities x, y, z, t into the equations of motion of the point, we obtain 

  

Thus the law of the parallelogram of velocities is valid according to our 
theory only to a first approximation. We set 

 *3

 

a is then to be looked upon as the angle between the velocities v and w. After 
a simple calculation we obtain*4 

  

It is worthy of remark that v and w enter into the expression for the resultant 
velocity in a symmetrical manner. If w also has the direction of the axis of X, 
we get 

 

It follows from this equation that from a composition of two velocities which 
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are less than c, there always results a velocity less than c. For if we set 
,  and  being positive and less than c, then 

  

It follows, further, that the velocity of light c cannot be altered by 
composition with a velocity less than that of light. For this case we obtain 

 

We might also have obtained the formula for V, for the case when v and w 
have the same direction, by compounding two transformations in accordance 
with § 3. If in addition to the systems K and k figuring in § 3 we introduce still 
another system of co-ordinates k' moving parallel to k, its initial point moving 
on the axis of *5 with the velocity w, we obtain equations between the 
quantities x, y, z, t and the corresponding quantities of k', which differ from 
the equations found in § 3 only in that the place of ``v'' is taken by the quantity 

 

from which we see that such parallel transformations--necessarily--form a 
group. 

We have now deduced the requisite laws of the theory of kinematics 
corresponding to our two principles, and we proceed to show their application 
to electrodynamics. 

II. ELECTRODYNAMICAL PART 
§ 6. Transformation of the Maxwell-Hertz 

Equations for Empty Space. On the Nature of 
the Electromotive Forces Occurring in a 

Magnetic Field During Motion 
Let the Maxwell-Hertz equations for empty space hold good for the 

stationary system K, so that we have  
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where (X, Y, Z) denotes the vector of the electric force, and (L, M, N) that of 
the magnetic force. 

If we apply to these equations the transformation developed in § 3, by 
referring the electromagnetic processes to the system of co-ordinates there 
introduced, moving with the velocity v, we obtain the equations 

  

where 

 

Now the principle of relativity requires that if the Maxwell-Hertz equations 
for empty space hold good in system K, they also hold good in system k; that 
is to say that the vectors of the electric and the magnetic force--( , , ) 
and ( , , )--of the moving system k, which are defined by their 
ponderomotive effects on electric or magnetic masses respectively, satisfy the 
following equations:-- 

  

Evidently the two systems of equations found for system k must express 
exactly the same thing, since both systems of equations are equivalent to the 
Maxwell-Hertz equations for system K. Since, further, the equations of the 
two systems agree, with the exception of the symbols for the vectors, it 
follows that the functions occurring in the systems of equations at 
corresponding places must agree, with the exception of a factor , which 

is common for all functions of the one system of equations, and is 
independent of  and  but depends upon v. Thus we have the relations 
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If we now form the reciprocal of this system of equations, firstly by solving 
the equations just obtained, and secondly by applying the equations to the 
inverse transformation (from k to K), which is characterized by the velocity -v, 
it follows, when we consider that the two systems of equations thus obtained 

must be identical, that . Further, from reasons of symmetry8 

and therefore 

 

and our equations assume the form 

  

As to the interpretation of these equations we make the following remarks: Let 
a point charge of electricity have the magnitude ``one'' when measured in the 
stationary system K, i.e. let it when at rest in the stationary system exert a 
force of one dyne upon an equal quantity of electricity at a distance of one cm. 
By the principle of relativity this electric charge is also of the magnitude 
``one'' when measured in the moving system. If this quantity of electricity is at 
rest relatively to the stationary system, then by definition the vector (X, Y, Z) 
is equal to the force acting upon it. If the quantity of electricity is at rest 
relatively to the moving system (at least at the relevant instant), then the force 
acting upon it, measured in the moving system, is equal to the vector ( , , 

). Consequently the first three equations above allow themselves to be 
clothed in words in the two following ways:-- 

1. If a unit electric point charge is in motion in an electromagnetic field, 
there acts upon it, in addition to the electric force, an ``electromotive 
force'' which, if we neglect the terms multiplied by the second and 
higher powers of v/c, is equal to the vector-product of the velocity of the 
charge and the magnetic force, divided by the velocity of light. (Old 
manner of expression.)  

2. If a unit electric point charge is in motion in an electromagnetic field, 
the force acting upon it is equal to the electric force which is present at 
the locality of the charge, and which we ascertain by transformation of 
the field to a system of co-ordinates at rest relatively to the electrical 
charge. (New manner of expression.)  

The analogy holds with ``magnetomotive forces.'' We see that 
electromotive force plays in the developed theory merely the part of an 
auxiliary concept, which owes its introduction to the circumstance that electric 
and magnetic forces do not exist independently of the state of motion of the 
system of co-ordinates. 

Furthermore it is clear that the asymmetry mentioned in the introduction as 
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arising when we consider the currents produced by the relative motion of a 
magnet and a conductor, now disappears. Moreover, questions as to the ``seat'' 
of electrodynamic electromotive forces (unipolar machines) now have no 
point. 

§ 7. Theory of Doppler's Principle and of 
Aberration 

In the system K, very far from the origin of co-ordinates, let there be a 
source of electrodynamic waves, which in a part of space containing the origin 
of co-ordinates may be represented to a sufficient degree of approximation by 
the equations  

  

where 

  

Here ( , , ) and ( , , ) are the vectors defining the amplitude 

of the wave-train, and l, m, n the direction-cosines of the wave-normals. We 
wish to know the constitution of these waves, when they are examined by an 
observer at rest in the moving system k. 

Applying the equations of transformation found in § 6 for electric and 
magnetic forces, and those found in § 3 for the co-ordinates and the time, we 
obtain directly 

  

where 
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From the equation for  it follows that if an observer is moving with 
velocity v relatively to an infinitely distant source of light of frequency , in 
such a way that the connecting line ``source-observer'' makes the angle  

with the velocity of the observer referred to a system of co-ordinates which is 
at rest relatively to the source of light, the frequency  of the light perceived 
by the observer is given by the equation 

  

This is Doppler's principle for any velocities whatever. When  the 

equation assumes the perspicuous form 

  

We see that, in contrast with the customary view, when . 

If we call the angle between the wave-normal (direction of the ray) in the 
moving system and the connecting line ``source-observer'' , the equation for 

*6 assumes the form 

  

This equation expresses the law of aberration in its most general form. If 
, the equation becomes simply 

 

We still have to find the amplitude of the waves, as it appears in the moving 
system. If we call the amplitude of the electric or magnetic force A or  
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respectively, accordingly as it is measured in the stationary system or in the 
moving system, we obtain 

  

which equation, if , simplifies into 

  

It follows from these results that to an observer approaching a source of 
light with the velocity c, this source of light must appear of infinite intensity. 

§ 8. Transformation of the Energy of Light Rays. 
Theory of the Pressure of Radiation Exerted on 

Perfect Reflectors 

Since equals the energy of light per unit of volume, we have to 

regard , by the principle of relativity, as the energy of light in the 

moving system. Thus would be the ratio of the ``measured in motion'' 

to the ``measured at rest'' energy of a given light complex, if the volume of a 
light complex were the same, whether measured in K or in k. But this is not 
the case. If l, m, n are the direction-cosines of the wave-normals of the light in 
the stationary system, no energy passes through the surface elements of a 
spherical surface moving with the velocity of light:--  

  

We may therefore say that this surface permanently encloses the same light 
complex. We inquire as to the quantity of energy enclosed by this surface, 
viewed in system k, that is, as to the energy of the light complex relatively to 
the system k. 

The spherical surface--viewed in the moving system--is an ellipsoidal 
surface, the equation for which, at the time , is 

  

If S is the volume of the sphere, and  that of this ellipsoid, then by a simple 
calculation 

Page 18 of 27On the Electrodynamics of Moving Bodies

21.11.2005http://www.fourmilab.ch/etexts/einstein/specrel/www/



  

Thus, if we call the light energy enclosed by this surface E when it is 
measured in the stationary system, and  when measured in the moving 
system, we obtain 

  

and this formula, when , simplifies into 

  

It is remarkable that the energy and the frequency of a light complex vary 
with the state of motion of the observer in accordance with the same law. 

Now let the co-ordinate plane  be a perfectly reflecting surface, at 

which the plane waves considered in § 7 are reflected. We seek for the 
pressure of light exerted on the reflecting surface, and for the direction, 
frequency, and intensity of the light after reflexion. 

Let the incidental light be defined by the quantities A, ,  (referred to 

system K). Viewed from k the corresponding quantities are 

  

For the reflected light, referring the process to system k, we obtain 

  

Finally, by transforming back to the stationary system K, we obtain for the 
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reflected light 

  

The energy (measured in the stationary system) which is incident upon unit 
area of the mirror in unit time is evidently . The energy 

leaving the unit of surface of the mirror in the unit of time is 
. The difference of these two expressions is, by the 

principle of energy, the work done by the pressure of light in the unit of time. 
If we set down this work as equal to the product Pv, where P is the pressure of 
light, we obtain 

  

In agreement with experiment and with other theories, we obtain to a first 
approximation 

  

All problems in the optics of moving bodies can be solved by the method 
here employed. What is essential is, that the electric and magnetic force of the 
light which is influenced by a moving body, be transformed into a system of 
co-ordinates at rest relatively to the body. By this means all problems in the 
optics of moving bodies will be reduced to a series of problems in the optics 
of stationary bodies. 

§ 9. Transformation of the Maxwell-Hertz 
Equations when Convection-Currents are Taken 

into Account 
We start from the equations  
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where 

  

denotes  times the density of electricity, and (ux,uy,uz) the velocity-vector 
of the charge. If we imagine the electric charges to be invariably coupled to 
small rigid bodies (ions, electrons), these equations are the electromagnetic 
basis of the Lorentzian electrodynamics and optics of moving bodies. 

Let these equations be valid in the system K, and transform them, with the 
assistance of the equations of transformation given in §§ 3 and 6, to the 
system k. We then obtain the equations 

  

where 

  

and 

  

Since--as follows from the theorem of addition of velocities (§ 5)--the vector 
 is nothing else than the velocity of the electric charge, measured 

in the system k, we have the proof that, on the basis of our kinematical 
principles, the electrodynamic foundation of Lorentz's theory of the 
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electrodynamics of moving bodies is in agreement with the principle of 
relativity. 

In addition I may briefly remark that the following important law may 
easily be deduced from the developed equations: If an electrically charged 
body is in motion anywhere in space without altering its charge when 
regarded from a system of co-ordinates moving with the body, its charge also 
remains--when regarded from the ``stationary'' system K--constant. 

§ 10. Dynamics of the Slowly Accelerated 
Electron 

Let there be in motion in an electromagnetic field an electrically charged 
particle (in the sequel called an ``electron''), for the law of motion of which we 
assume as follows:--  

If the electron is at rest at a given epoch, the motion of the electron ensues 
in the next instant of time according to the equations 

  

where x, y, z denote the co-ordinates of the electron, and m the mass of the 
electron, as long as its motion is slow. 

Now, secondly, let the velocity of the electron at a given epoch be v. We 
seek the law of motion of the electron in the immediately ensuing instants of 
time. 

Without affecting the general character of our considerations, we may and 
will assume that the electron, at the moment when we give it our attention, is 
at the origin of the co-ordinates, and moves with the velocity v along the axis 
of X of the system K. It is then clear that at the given moment (t=0) the 
electron is at rest relatively to a system of co-ordinates which is in parallel 
motion with velocity v along the axis of X. 

From the above assumption, in combination with the principle of relativity, 
it is clear that in the immediately ensuing time (for small values of t) the 
electron, viewed from the system k, moves in accordance with the equations 
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in which the symbols , , , , ,  refer to the system k. If, further, we 

decide that when t=x=y=z=0 then , the transformation 

equations of §§ 3 and 6 hold good, so that we have 

  

With the help of these equations we transform the above equations of 
motion from system k to system K, and obtain 

Taking the ordinary point of view we now inquire as to the ``longitudinal'' 
and the ``transverse'' mass of the moving electron. We write the equations (A) 
in the form 

  

and remark firstly that , , are the components of the 
ponderomotive force acting upon the electron, and are so indeed as viewed in 
a system moving at the moment with the electron, with the same velocity as 
the electron. (This force might be measured, for example, by a spring balance 
at rest in the last-mentioned system.) Now if we call this force simply ``the 
force acting upon the electron,''9 and maintain the equation--mass × 
acceleration = force--and if we also decide that the accelerations are to be 
measured in the stationary system K, we derive from the above equations 
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With a different definition of force and acceleration we should naturally 
obtain other values for the masses. This shows us that in comparing different 
theories of the motion of the electron we must proceed very cautiously. 

We remark that these results as to the mass are also valid for ponderable 
material points, because a ponderable material point can be made into an 
electron (in our sense of the word) by the addition of an electric charge, no 
matter how small. 

We will now determine the kinetic energy of the electron. If an electron 
moves from rest at the origin of co-ordinates of the system K along the axis of 
X under the action of an electrostatic force X, it is clear that the energy 
withdrawn from the electrostatic field has the value . As the electron 

is to be slowly accelerated, and consequently may not give off any energy in 
the form of radiation, the energy withdrawn from the electrostatic field must 
be put down as equal to the energy of motion W of the electron. Bearing in 
mind that during the whole process of motion which we are considering, the 
first of the equations (A) applies, we therefore obtain 

  

Thus, when v=c, W becomes infinite. Velocities greater than that of light 
have--as in our previous results--no possibility of existence. 

This expression for the kinetic energy must also, by virtue of the argument 
stated above, apply to ponderable masses as well. 

We will now enumerate the properties of the motion of the electron which 
result from the system of equations (A), and are accessible to experiment. 

1. From the second equation of the system (A) it follows that an electric 
force Y and a magnetic force N have an equally strong deflective action 
on an electron moving with the velocity v, when . Thus we 

see that it is possible by our theory to determine the velocity of the 
electron from the ratio of the magnetic power of deflexion to the 

electric power of deflexion , for any velocity, by applying the law 

  

This relationship may be tested experimentally, since the velocity of 
the electron can be directly measured, e.g. by means of rapidly 
oscillating electric and magnetic fields. 
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2. From the deduction for the kinetic energy of the electron it follows that 
between the potential difference, P, traversed and the acquired velocity 
v of the electron there must be the relationship 

  

3. We calculate the radius of curvature of the path of the electron when a 
magnetic force N is present (as the only deflective force), acting 
perpendicularly to the velocity of the electron. From the second of the 
equations (A) we obtain 

  

or 

  

These three relationships are a complete expression for the laws according 
to which, by the theory here advanced, the electron must move. 

In conclusion I wish to say that in working at the problem here dealt with I 
have had the loyal assistance of my friend and colleague M. Besso, and that I 
am indebted to him for several valuable suggestions. 

Footnotes 

1.  
The preceding memoir by Lorentz was not at this time 
known to the author. 

2.  
i.e. to the first approximation. 

3.  
We shall not here discuss the inexactitude which lurks in 
the concept of simultaneity of two events at 
approximately the same place, which can only be 
removed by an abstraction. 

4.  
``Time'' here denotes ``time of the stationary system'' and 
also ``position of hands of the moving clock situated at 
the place under discussion.'' 

5.  
The equations of the Lorentz transformation may be 
more simply deduced directly from the condition that in 
virtue of those equations the relation x2+y2+z2=c2t2 shall 
have as its consequence the second relation 
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. 

6.  
That is, a body possessing spherical form when 
examined at rest. 

7.  
Not a pendulum-clock, which is physically a system to 
which the Earth belongs. This case had to be excluded. 

8.  
If, for example, X=Y=Z=L=M=0, and N 0, then from 

reasons of symmetry it is clear that when v changes sign 
without changing its numerical value, must also 
change sign without changing its numerical value. 

9.  
The definition of force here given is not advantageous, as 
was first shown by M. Planck. It is more to the point to 
define force in such a way that the laws of momentum 
and energy assume the simplest form. 

Editor's Notes 

*1  
In Einstein's original paper, the symbols ( , H, Z) 
for the co-ordinates of the moving system k were 
introduced without explicitly defining them. In the 
1923 English translation, (X, Y, Z) were used, 
creating an ambiguity between X co-ordinates in 
the fixed system K and the parallel axis in moving 
system k. Here and in subsequent references we 
use  when referring to the axis of system k along 
which the system is translating with respect to K. In 
addition, the reference to system , later in this 
sentence was incorrectly given as ``k'' in the 1923 
English translation. 

*2  
In the original 1923 English edition, this phrase was 
erroneously translated as ``plain figures''. I have 
used the correct ``plane figures'' in this document. 

*3  
This equation was incorrectly given in Einstein's 
original paper and the 1923 English translation as 
a=tan-1 wy/wx. 

*4  
The exponent of c in the denominator of the sine 
term of this equation was erroneously given as 2 in 
the 1923 edition of this paper. It has been corrected 
to unity here. 

*5  
``X'' in the 1923 English translation. 

*6  
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Erroneously given as l' in the 1923 English 
translation, propagating an error, despite a change 
in symbols, from the original 1905 paper. 
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